References

[Catena2019]
  1. Catena et al., Atomic responses to general dark matter-electron interactions, Phys.Rev.Res. 2 (2020) 3, 033195, [arXiv:1912.08204].

[Bednyakov2005]

V.A. Bednyakov, Nuclear spin structure in dark matter search: The Zero momentum transfer limit, Phys.Part.Nucl. 36 (2005) 131-152, [arXiv:0406218].

[Emken2019]
  1. Emken, Dark Matter in the Earth and the Sun - Simulating Underground Scatterings for the Direct Detection of Low-Mass Dark Matter, PhD thesis 2019, [arXiv:1906.07541].

[Essig2012]
  1. Essig et al. , Direct Detection of Sub-GeV Dark Matter, Phys.Rev.D 85 (2012) 076007 , [arXiv:1108.5383].

[Essig2016]
  1. Essig et al. , Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 , [arXiv:1509.01598].

[Essig2020]
  1. Essig et al. , Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated Atoms and Semiconductors, Phys.Rev.Lett. 124 (2020) 2, 021801 , [arXiv:1908.10881].

[Evans2019]

N.W. Evans et al., Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage, Phys.Rev.D 99 (2019) 2, 023012, [arXiv:1810.11468].

[Klos2013]
  1. Klos et al., Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys.Rev.D 88 (2013) 8, 083516, [arXiv:1304.7684].

[Nobile2021]
  1. Del Nobile, Appendiciario – A hands-on manual on the theory of direct Dark Matter detection, [arXiv:2104.12785].

[Yellin2002]
  1. Yellin, Finding an upper limit in the presence of unknown background, Phys.Rev.D 66 (2002) 032005, [arXiv:0203002].