
obscura
Release v1.0.0

Timon Emken

Apr 28, 2023

CONTENTS:

1 1. Getting started 3
1.1 Installation . 3
1.2 Using obscura as a tool . 4
1.3 Using obscura as a library . 7

2 2. The modular structure of obscura 9

3 3. The target classes 11
3.1 Nuclear targets . 11
3.2 Electron targets in atoms . 12
3.3 Electron targets in crystals . 13

4 4. The DM_Particle classes 15
4.1 The interface / base class . 15
4.2 Spin-Independent (SI) interactions . 16
4.3 Spin-Dependent (SD) interactions . 16

5 5. The DM_Distribution classes 17
5.1 The interface / base class . 17
5.2 The standard halo model (SHM) . 17
5.3 The SHM++ . 18
5.4 Imported DM distributions . 18

6 6. The DM_Detector classes 19
6.1 Nuclear recoil experiments . 19
6.2 Electron recoil experiments . 20

7 7. Examples: Putting it all together 21
7.1 Computing the recoil spectrum of SI & SD nuclear interactions . 21
7.2 Exclusion limits for a sub-GeV DM particle via electron recoil experiments 24

8 8. Included experimental analyses 29
8.1 Nuclear recoil experiments . 30
8.2 Electron recoil experiments . 31

9 Citing obscura 35
9.1 How to cite . 35
9.2 Research and research software using obscura . 36

10 Release history 37

i

11 License 39

12 Contact & Support 41

13 References 43

Bibliography 45

ii

obscura, Release v1.0.0

A modular C++ tool and library for dark matter direct detection computations for both nuclear and electron recoil
experiments.

The purpose of this documentation or manual is to provide insight into the polymorphic class structure of obscura and
how it can be applied in different contexts. It should also serve as a guide and describe the usage of obscura via code
examples.

The documentation does not contain a review of the physics implemented in the library. For more physics details, we
refer to e.g. chapter 3 of [Emken2019] or [Nobile2021].

If you want to contribute to obscura, please check out the contribution guidelines.

CONTENTS: 1

https://github.com/temken/obscura/actions/workflows/main.yml
https://codecov.io/gh/temken/obscura
https://obscura.readthedocs.io/en/latest/?badge=latest
https://opensource.org/licenses/MIT
https://doi.org/10.5281/zenodo.4557187
https://joss.theoj.org/papers/fd8076268036956d3bf08193c4fc2db9
https://github.com/temken/obscura/blob/main/docs/CONTRIBUTING.md

obscura, Release v1.0.0

2 CONTENTS:

CHAPTER

ONE

1. GETTING STARTED

1.1 Installation

Before building obscura, there are a few libraries that need to be installed.

1.1.1 Dependencies

1. boost

To install boost on a Mac, we can use homebrew

brew install boost

On Linux machines, run:

sudo apt-get update && sudo apt-get install -yq libboost-all-dev

2. libconfig

To install libconfig on a Mac, we can use homebrew

brew install libconfig

On Linux machines, you can build libconfig via:

wget https://hyperrealm.github.io/libconfig/dist/libconfig-1.7.2.tar.gz
tar -xvzf libconfig-1.7.2.tar.gz
pushd libconfig-1.7.2
./configure
make
sudo make install
popd

NOTE: Due to an update of libphysica, it is not necessary to install libconfig on your machine. If CMake cannot find
an installation, it will download and build the library locally in libphysica/external/libconfig.

3

https://brew.sh/
https://brew.sh/

obscura, Release v1.0.0

3. libphysica

libphysica does not need to be installed. It will be downloaded and compiled during the CMake build.

1.1.2 Download & Build

The obscura source code can be downloaded by cloning this git repository:

git clone https://github.com/temken/obscura.git
cd obscura

The code is compiled and the executable and library is built by CMake. To build run the following commands from the
repository’s root folder.:

cmake -E make_directory build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCODE_COVERAGE=OFF ..
cmake --build . --config Release
cmake --install .

If everything worked well, the executable and library file are created as:

bin/obscura
lib/libobscura.a

By default, obscura will be built as a static library. It is also possible to build it as shared library by adding the following
option to the configuration step.:

cmake -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DCODE_COVERAGE=OFF ..

In that case, the library file after installation is:

lib/libobscura.so

1.2 Using obscura as a tool

Obscura can be used as a tool and builds an executable which can be run from /bin/ via:

./obscura config.cfg

As can be seen in the /src/main.cpp file, this script computes direct detection limits and saves them in the /results/
folder. The specifications of the exclusion limits (DM physics and halo model, statistics, experiment, mass range,. . .)
are defined in a configuration file, in this case config.cfg. For the handling of configuration files, obscura relies on
libconfig.

4 Chapter 1. 1. Getting started

https://github.com/temken/obscura
https://cmake.org/
https://github.com/temken/obscura/blob/main/src/main.cpp
https://hyperrealm.github.io/libconfig/

obscura, Release v1.0.0

1.2.1 The configuration file

The configuration file contains all input parameters necessary to define the various obscura models.

Warning: The import of these parameters via libconfig is very case-sensitive. A float parameter has to be set to
e.g. 1.0, and not just 1.

//obscura - Configuration File

//ID
ID = "test";

//Dark matter particle
DM_mass = 0.1; // in GeV
DM_spin = 0.5;
DM_fraction = 1.0; // the DM particle's fractional␣

→˓abundance (set to 1.0 for 100%)
DM_light = false; // Options: true or false. low mass␣

→˓mode

DM_interaction = "SI"; // Options: "SI" or "SD"

DM_isospin_conserved = true; // only relevant for SI and␣
→˓SD

DM_relative_couplings = (1.0, 0.0); //relation between proton␣
→˓(left) and neutron (right) couplings.

␣
→˓ //only relevant if 'DM_isospin_conserved' is false.

DM_cross_section_nucleon = 1.0e-36; //in cm^2
DM_cross_section_electron = 1.0e-36; //in cm^2 (only relevant␣

→˓for SI and SD)
DM_form_factor = "Contact"; // Options: "Contact", "Electric-

→˓Dipole", "Long-Range", "General"
␣

→˓ //(only relevant for SI)
DM_mediator_mass = 0.0; // in MeV (only relevant if 'DM_form_

→˓factor' is "General")

//Dark matter distribution
DM_distribution = "SHM"; //Options: "SHM", "SHM++", "File"
DM_local_density = 0.4; //in GeV / cm^3

//Options for "SHM" and "SHM++"
SHM_v0 = 220.0; //in km/sec
SHM_vObserver = (0.0, 232.0, 0.0); //in km/sec
SHM_vEscape = 544.0; //in km/sec

//Options for "SHM++"
SHMpp_eta = 0.2;
SHMpp_beta = 0.9;

//Options for "File" (The file has to be a 2-column table of format v[km/sec] ::␣
→˓f(v) [sec/km])

(continues on next page)

1.2. Using obscura as a tool 5

obscura, Release v1.0.0

(continued from previous page)

file_path = "DM_Speed_PDF.txt";

//Dark matter detection experiment
DD_experiment = "Electron recoil"; //Options for nuclear recoils:

→˓"Nuclear recoil", "DAMIC_N_2011", "XENON1T_N_2017", "CRESST-II","CRESST-III", "CRESST-
→˓surface"

//Options for electron recoils:
→˓"Semiconductor","protoSENSEI@MINOS","protoSENSEI@surface", "SENSEI@MINOS", "CDMS-HVeV_
→˓2018", "CDMS-HVeV_2020", "Electron recoil", "XENON10_S2", "XENON100_S2", "XENON1T_S2",
→˓"DarkSide-50_S2"

//Options for user-defined experiments ("Nuclear recoil", "Electron recoil", and
→˓"Semiconductor")

//General
DD_exposure = 1.0; //in kg years
DD_efficiency = 1.0; //flat efficiency
DD_observed_events = 0; //observed signal events
DD_expected_background = 0.0; //expected background events

//Specific options for "Nuclear recoil"
DD_targets_nuclear = (

(4.0, 8),
(1.0, 20),
(1.0, 74)

); // Nuclear targets defined␣
→˓by atom ratio/abundances and Z

DD_threshold_nuclear = 4.0; //in keV
DD_Emax_nuclear = 40.0; //in keV
DD_energy_resolution = 0.0; //in keV

//Specific options for "Electron recoil" and "Semiconductor:
DD_target_electron = "Xe"; //Options for "Electron recoil": "Xe

→˓", "Ar"
//Options for

→˓"Semiconductor": "Si", "Ge"
DD_threshold_electron = 4; //In number of electrons or␣

→˓electron hole pairs.

//Computation of exclusion limits
constraints_certainty = 0.95; //Certainty level
constraints_mass_min = 0.02; //in GeV
constraints_mass_max = 1.0; //in GeV
constraints_masses = 10;

6 Chapter 1. 1. Getting started

obscura, Release v1.0.0

1.3 Using obscura as a library

If we want to use obscura functions in an external code, we can do so and import it as a library. We recommend to do
this inside your CMake build, where obscura can be downloaded, built, included, and linked automatically during the
build of your code.

As an instructional example this repository contains a C++ project template built with CMake that imports and uses
the obscura library.

1.3. Using obscura as a library 7

https://github.com/temken/template_cpp_cmake_obscura

obscura, Release v1.0.0

8 Chapter 1. 1. Getting started

CHAPTER

TWO

2. THE MODULAR STRUCTURE OF OBSCURA

The computation of e.g. the electron recoil spectrum probed in direct detection experiments combines inputs from
various fields of physics. We need to specify the assumed particle physics of the DM particle. The properties of the
DM halo of the Milky way is an important astrophysics input. For the description of the target particles, and how they
react to a kick from an incoming DM particle, we need to include knowledge of atomic, nuclear, and condensed matter
physics. In order to make predictions, we furthermore need to define the detection experiments specifications. Finally,
the result of such an experiment needs to be interpreted using statistics.

This high level of modularity in this type of calculation needs to be reflected in the code’s polymorphic structure.
The goal of obscura is to provide for each of the different inputs one generic interface or abstract base class, that
comprises the general required functionalities, without specifying the detailed implementations further. These depend
on a multitude of assumptions which can change in different projects, for different users, etc.

If the base classes are defined properly, it is also possible and straight-forward to

1. extend obscura by implementing further derived classes overriding the virtual functions of the base class.

2. design research software that is agnostic to the detailed implementation and thereby very generally applicable to
a variety of scenarios. As long as our scientific functions are formulated in terms of these base functions, they
will be able to handle any new implementation that comes in the form of derived classes.

9

obscura, Release v1.0.0

The three most important abstract base classes of obscura are

1. DM_Particle

2. DM_Distribution

3. DM_Detector

We will discuss the interface each of these classes provide in more detail. But first we take a look at the detection
targets in direct DM search experiments, namely nuclei, bound electrons in atoms, and bound electrons in crystals.

10 Chapter 2. 2. The modular structure of obscura

CHAPTER

THREE

3. THE TARGET CLASSES

The basic hope of direct detection experiments is that the DM particles from the galactic halo occasionally collide with
ordinary particles, see e.g. [Nobile2021]. The original target of direct DM searches were nuclear recoils. Later on also
electron targets gained more and more attention in the context of sub-GeV dark matter [Essig2012].

In obscura each target type is represented by a class, that can e.g. be passed to the cross section functions of the
DM_Particle class, see 4. The DM_Particle classes.

3.1 Nuclear targets

For nuclear recoil experiments, we define two target classes, Isotope and Nucleus that are declared in /in-
clude/obscura/Target_Nucleus.hpp.

3.1.1 The Isotope class

A nuclear isotope is characterized by the number Z of protons and A of nucleons (protons and neutrons), its mass,
spin, and average spin contribution for protons and neutrons as required e.g. in the context of spin-dependent nuclear
interactions.

3.1.2 The Nucleus class

In addition to Isotope, we also define a Nucleus class which mainly consists of a number of isotopes with given
relative abundances.

Construction of nuclear targets

There are different ways to construct instances of Isotope and Nucleus.

Example: Assume we are interested in oxygen as a target, either the isotope O-16 or the element of various isotopes.

#include "obscura/Target_Nucleus.hpp"

// ...

// We can define O-16 via the constructor.
Isotope oxygen_16(8,16);

11

https://github.com/temken/obscura/blob/main/include/obscura/Target_Nucleus.hpp
https://github.com/temken/obscura/blob/main/include/obscura/Target_Nucleus.hpp

obscura, Release v1.0.0

This instance of an oxygen isotope however has no knowledge of e.g. its spin or relative abundance in nature.

For this purpose, obscura contains a nuclear data set, see /data/Nuclear_Data.txt ([Bednyakov2005] [Klos2013]), which
can be accessed through the following function defined in Target_Nucleus.hpp.

extern Isotope Get_Isotope(unsigned int Z, unsigned int A);
extern Nucleus Get_Nucleus(unsigned int Z);
extern Nucleus Get_Nucleus(std::string name);

Using these functions, we can construct isotopes and nuclei simply as

#include "obscura/Target_Nucleus.hpp"

// ...

Isotope oxygen_16 = Get_Isotope(8,16);
Nucleus oxygen = Get_Nucleus(8);
Nucleus oxygen_alternative = Get_Nucleus("O");

The last two lines construct an instance of the Nucleus class containing all isotopes of oxygen including their relative
abundance, spin, and average spin contribution of protons and neutrons.

3.2 Electron targets in atoms

For sub-GeV DM searches, an important target are electrons bound in atoms [Essig2012]. To take into account the
fact that electrons are bound states, we need to evaluate the ionization form factor or atomic response function for each
electronic orbital [Catena2019].

The target classes for atomic electrons are declared in /include/obscura/Target_Atom.hpp.

3.2.1 The Atomic_Electron class

The first target class in this context is Atomic_Electron.

By constructing an instance of this class, the tabulated ionization form factor is imported from
/data/Form_Factors_Ionization/.

3.2.2 The Atom class

Having target classes for nuclei and bound electrons, we can combine them into a single atomic target, consisting of a
nucleus and a number of bound electrons.

3.2.3 Included ionization form factors

At this point, obscura comes with the ionization form factors of

• Xenon (5p, 5s, 4d, 4p, 4s)

• Argon (3p, 3s, 2p, 2s, 1s)

The tables can be found under /data/Form_Factors_Ionization/. They have been tabulated using the DarkARC code as
described in detail in [Catena2019].

The easiest way to access the ionization form factors is by constructing an instance of Atom, as seen in this example.

12 Chapter 3. 3. The target classes

https://github.com/temken/obscura/blob/main/data/Nuclear_Data.txt
https://github.com/temken/obscura/blob/main/include/obscura/Target_Atom.hpp
https://github.com/temken/obscura/tree/main/data/Form_Factors_Ionization
https://github.com/temken/obscura/tree/main/data/Form_Factors_Ionization
https://github.com/temken/DarkARC

obscura, Release v1.0.0

#include "libphysica/Natural_Units.hpp"

#include "obscura/Target_Atom.hpp"

using namespace libphysica::natural_units;
// ...

Atom xenon("Xe");
Atom argon("Ar");

// For example, to access the ionization form factor of xenon's 5s (quantum numbers n=5,␣
→˓l=0) orbital for a given momentum transfer q and energy E_e:
int n = 5; int l = 0;
double q = 0.5 * keV;
double E_e = 10.0 * eV;

std::cout << xenon.Electron(n, l).Ionization_Form_Factor(q, E_e) << std::endl;

3.3 Electron targets in crystals

One of the most important targets for sub-GeV DM detectors are crystals, such as e.g. semiconductors [Essig2016].
The electronic properties of the target material is encapsulated in the crystal form factor which is tabulated and can be
found in /data/Semiconductors/. The included crystals are

• Silicon semiconductors

• Germanium semiconductors

The tables have been generated using QEdark, a module of Quantum ESPRESSO.

Also for crystals, obscura contains a target class Crystal declared in /include/obscura/Target_Crystal.hpp.

The crystal form factor, similarly to the ionization form factors, are imported by the class constructor. Here is an
example of how to access the crystal form factor.

#include "libphysica/Natural_Units.hpp"

#include "obscura/Target_Crystal.hpp"

using namespace libphysica::natural_units;

// ...

Crystal silicon("Si");
Crystal germanium("Ge");

double q = 0.5 * keV;
double E_e = 10.0 * eV;

std::cout << silicon.Crystal_Form_Factor(q, E_e) << std::endl;
std::cout << germanium.Crystal_Form_Factor(q, E_e) << std::endl;

3.3. Electron targets in crystals 13

https://github.com/temken/obscura/tree/main/data/Form_Factors_Ionization
http://ddldm.physics.sunysb.edu/ddlDM/
https://www.quantum-espresso.org/
https://github.com/temken/obscura/blob/main/include/obscura/Target_Crystal.hpp

obscura, Release v1.0.0

14 Chapter 3. 3. The target classes

CHAPTER

FOUR

4. THE DM_PARTICLE CLASSES

The DM_Particle class and its derived classes are responsible for the particle physics aspects of direct detection. In
particular, an instance of DM_Particle entails the particle properties of a DM candidate particle, such as its mass,
spin, and its differential and total interaction cross sections with nuclei or electrons. The base class’s functions provide
an interface that is sufficient for the calculation of e.g. event rates at direct DM search experiments. Furthermore,
it contains a number of functions regarding scattering angles, their distributions and sampling, which might not be
relevant for direct detection, but can be used in the context of e.g. MC simulations.

4.1 The interface / base class

The abstract base class is defined in /include/obscura/DM_Particle.hpp and all the member functions and parameters
can be seen there.

The most important (virtual) functions for direct detection specific calculations are the differential cross sections.

//Differential cross sections for nuclear targets
virtual double dSigma_dq2_Nucleus(double q, const Isotope& target, double vDM, double␣
→˓param = -1.0) const { return 0.0; };
double dSigma_dER_Nucleus(double ER, const Isotope& target, double vDM, double param = -
→˓1.0) const;
double d2Sigma_dER_dEe_Migdal(double ER, double Ee, double vDM, const Isotope& isotope,␣
→˓Atomic_Electron& shell) const;

// Differential cross section for electron targets
virtual double dSigma_dq2_Electron(double q, double vDM, double param = -1.0) const {␣
→˓return 0.0; };
virtual double d2Sigma_dq2_dEe_Ionization(double q, double Ee, double vDM, Atomic_
→˓Electron& shell) const { return 0.0; };
virtual double d2Sigma_dq2_dEe_Crystal(double q, double Ee, double vDM, Crystal&␣
→˓crystal) const { return 0.0; };

We point out that here we have to pass instances of the target classes discussed in the previous section (i.e. nuclear
isotopes, atomic electrons, and electrons in crystals). Also included is a simple implementation of Migdal scatterings
with atomic targets based on [Essig2020].

The most standard DM candidate considered in the direct detection literature is a WIMP with SI or SD
interactions. obscura contains derived classes for each of these scenarios, which are declared in /in-
clude/obscura/DM_Particle_Standard.hpp.

15

https://github.com/temken/obscura/blob/main/include/obscura/DM_Particle.hpp
https://github.com/temken/obscura/blob/main/include/obscura/DM_Particle_Standard.hpp
https://github.com/temken/obscura/blob/main/include/obscura/DM_Particle_Standard.hpp

obscura, Release v1.0.0

4.2 Spin-Independent (SI) interactions

The differential cross section for SI nuclear interactions is given by

d𝜎SI
𝑁

d𝐸𝑅
=

𝑚𝑁

2𝜋𝑣2𝜒
[𝑓𝑝𝑍 + 𝑓𝑛(𝐴− 𝑍)]

2 ⃒⃒
𝐹 SI
𝑁 (𝐸𝑅)

⃒⃒2
.

For details, we refere to e.g. chapter 3.4 of [Emken2019].

The class DM_Particle_SI is derived from DM_Particle and evaluates the cross sections of SI interactions with
nuclei (and electrons).

The following example demonstrates how to

• construct an instance of DM_Particle_SI that describes a DM particle of 10 GeV mass.

• set the SI proton cross section to 𝜎𝑝 = 10−40cm2, the electron cross section of 𝜎𝑒 = 10−36cm2.

• to evaluate the differential and total scattering cross section with argon nuclei.

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Particle_Standard.hpp"

using namespace libphysica::natural_units;

// ...

// Declare the DM particle
obscura::DM_Particle_SI dm(10.0 * GeV);
dm.Set_Sigma_Proton(1.0e-40 * cm * cm);
dm.Set_Sigma_Electron(1.0e-36 * cm * cm);

// Define the target
obscura::Isotope argon = obscura::Get_Isotope(18, 40);

// Evaluate cross sections
double E_R = 1.0 * keV;
double v_DM = 300.0 * km/sec;
double diff_cross_section = dm.dSigma_dER_Nucleus(E_R, argon, v_DM);
double tot_cross_section = dm.Sigma_Total_Nucleus(argon, v_DM);

// Convert to other units
std::cout <<In_Units(diff_cross_section, cm * cm / keV)<<std::endl;
std::cout <<In_Units(tot_cross_section, cm * cm)<<std::endl;

4.3 Spin-Dependent (SD) interactions

The differential cross section for SD nuclear interactions is given by

d𝜎SD
𝑁

d𝐸𝑅
=

2𝑚𝑁

𝜋𝑣2𝜒

𝐽 + 1

𝐽
(𝑓𝑝⟨𝑆𝑝⟩+ 𝑓𝑛⟨𝑆𝑁 ⟩)2 𝐹 SD

𝑁 (𝐸𝑅)
2
⃒⃒

Similarly to DM_Particle_SI, we also define a DM_Particle_SD class, which evaluates this cross section for nuclear
targets with spin 𝑆 ̸= 0.

16 Chapter 4. 4. The DM_Particle classes

CHAPTER

FIVE

5. THE DM_DISTRIBUTION CLASSES

In order to make predictions for direct detection experiments, the statistical properties of the incoming DM flux need to
be specified. In particular, we need to know how many DM particles pass through the detector and with what energy.
In other words, we need to know the DM particle flux, or alternatively the local DM density and the energy distribution.

5.1 The interface / base class

The class DM_Distribution, that is declared in /include/obscura/DM_Distribution.hpp, is an abstract base class or
interface that defines all the functions we require to characterize a distribution and flux of DM particles.

Most importantly, the class provides interfaces to probability density functions (PDFs) for the DM particles’ velocity
or speed, their local energy density, differential particle flux, etc.

5.2 The standard halo model (SHM)

The conventional assumptions on the halo DM particles’ properties is the Standard Halo Model (SHM). The SHM
describes the galactic DM by a truncated Maxwell-Boltzmann distribution. It is characterized by the following 4
parameters (for details see e.g. chapter 3.2 of [Emken2019]

𝜌𝜒, 𝑣0, 𝑣esc,vobs

In /include/obscura/DM_Halo_Models.hpp we define the Standard_Halo_Model class which is an implemenation of
this model. It is a derived class of DM_Distribution.

We can construct the SHM model by the default constructor, which assumes default values for the 4 parameters.

#include "obscura/DM_Halo_Models.hpp"

// ...

obscura::Standard_Halo_Model shm;

Or we define the parameters explicitly.

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Halo_Models.hpp"

using namespace libphysica::natural_units;
(continues on next page)

17

https://github.com/temken/obscura/blob/main/include/obscura/DM_Distribution.hpp
https://github.com/temken/obscura/blob/main/include/obscura/DM_Halo_Models.hpp

obscura, Release v1.0.0

(continued from previous page)

// ...
double rho = 0.4 * GeV / cm / cm / cm;
double v_0 = 230.0 * km / sec;
double v_esc = 600 * km / sec;
double v_obs = 232.0 * km / sec;
obscura::Standard_Halo_Model shm(rho, v_0, v_obs, v_esc);

5.3 The SHM++

As a second example for a DM halo model, obscura also implements the SHM++ as proposed in [Evans2019].

Since it extends the SHM, the corresponding class SHM_Plus_Plus is a derived class of
Standard_Halo_Model which is in turn derived from DM_Distribution. The class is also declared in /in-
clude/obscura/DM_Halo_Models.hpp.

This halo model can be constructed and used essentially identically to the SHM.

5.4 Imported DM distributions

It is also possible to import a DM distribution from a file. This is the purpose of the Imported_DM_Distribution
class, another derived class of DM_Distribution which can be found in /include/obscura/DM_Distribution.hpp.

As input file, we need a two-column table of the DM speed PDF using the format (v[km/sec] :: f(v) [sec/km]). Addi-
tionally we need to specify the local DM density.

Here is an example of using this class assuming a tabulated speed pdf given in the file DM_Speed_PDF.txt.

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Distribution.hpp"

using namespace libphysica::natural_units;

// ...
double rho = 0.4 * GeV / cm / cm / cm;
obscura::Imported_DM_Distribution dm_distribution(rho, "DM_Speed_PDF.txt");

18 Chapter 5. 5. The DM_Distribution classes

https://github.com/temken/obscura/blob/main/include/obscura/DM_Halo_Models.hpp
https://github.com/temken/obscura/blob/main/include/obscura/DM_Halo_Models.hpp
https://github.com/temken/obscura/blob/main/include/obscura/DM_Distribution.hpp

CHAPTER

SIX

6. THE DM_DETECTOR CLASSES

The details of a direct detection experiment are summarized in the DM_Detector class declared in /in-
clude/obscura/Direct_Detection.hpp. In particular, it responsible for:

1. The statistical methods to compute likelihoods and exclusion limits. Since these are independent of the type
of experiment, this functionality is part of the base class DM_Detector. As of now, obscura implements the
following statistical analyses. 1. Poisson statistics 2. Binned Poisson statistics 3. Maximum gap following
[Yellin2002].

2. The detector details, such as detection efficiencies, energy resolution, target particles, etc. These can be very
specific and are implemented in classes derived from DM_Detector, e.g. DM_Detector_Nucleus.

We provide a number of examples of how to construct different instances of derived classes of DM_Detector.

6.1 Nuclear recoil experiments

For experiments looking for DM induced nuclear recoils, obscura contains the DM_Detector_Nucleus class that is
declared in /include/obscura/Direct_Detection_Nucleus.hpp.

For example, assume we have a nuclear recoil experiment with CaWO4 crystals, an energy threshold of 500 eV, and
an exposure of 100 kg days. This information suffices to define a toy experiment.

#include "libphysica/Natural_Units.hpp"

#include "obscura/Target_Nucleus.hpp"
#include "obscura/DM_Detector_Nucleus.hpp"

using namespace libphysica::natural_units;

// ...

double exposure = 100.0 * kg * day;
std::vector<Nucleus> nuclear_targets = {obscura::Get_Nucleus(8), obscura::Get_
→˓Nucleus(20), obscura::Get_Nucleus(74)};
std::vector<double> target_ratios = {4, 1, 1};
double energy_threshold = 500 * eV;
obscura::DM_Detector_Nucleus detector("Nuclear recoil experiment", exposure, nuclear_
→˓targets, target_ratios);

19

https://github.com/temken/obscura/blob/main/include/obscura/Direct_Detection.hpp
https://github.com/temken/obscura/blob/main/include/obscura/Direct_Detection.hpp
https://github.com/temken/obscura/blob/main/include/obscura/Direct_Detection_Nucleus.hpp

obscura, Release v1.0.0

6.2 Electron recoil experiments

For electron recoil experiments with atomic targets, we have to use the DM_Detector_Ionization_ER class that can
be found in /include/obscura/Direct_Detection_ER.hpp

Here is an example of a xenon target experiment probing DM-electron interactions and DM induced ionizations. As
exposure we choose 100 kg days, and we furthermore assume that only events with at least 4 ionized electrons can be
detectred.

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Detector_ER.hpp"

using namespace libphysica::natural_units;

// ...

double exposure = 100.0 * kg * day;
obscura::DM_Detector_Ionization_ER xenon_experiment("Electron recoil experiment",␣
→˓exposure, "Xe");
argon_experiment.Use_Electron_Threshold(4);

Alternatively, many experiments looking for sub-GeV DM use semiconductor crystals as targets. In this case, there is
another derived class, DM_Detector_Crystal.

Again we construct an example toy experiment. This time, we assume a silicon crystal target, choose an exposure of
10 g year, and assume that only events with at least 2 electron-hole pairs can trigger the detector.

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Detector_Crystal.hpp"

using namespace libphysica::natural_units;

// ...

double exposure = 10.0 * gram * year;
obscura::DM_Detector_Crystal silicon_experiment("Crystal target experiment", exposure,
→˓"Si");
silicon_experiment.Use_Q_Threshold(2);

20 Chapter 6. 6. The DM_Detector classes

https://github.com/temken/obscura/blob/main/include/obscura/Direct_Detection_ER.hpp

CHAPTER

SEVEN

7. EXAMPLES: PUTTING IT ALL TOGETHER

7.1 Computing the recoil spectrum of SI & SD nuclear interactions

As an example for nuclear recoils that also illustrates nicely the modular structure of obscura, we compute the nuclear
recoil spectrum d𝑅

d𝐸𝑅
for a 10 GeV DM particle interacting with xenon nuclei via spin-independent and spin-dependent

interactions.

For the definition and details of the nuclear recoil spectrum, see e.g. chapter 3.5 of [Emken2019].

1. First we define the DM particle objects that describe SI and SD interactions

// 1. DM particle (SI and Sd)
obscura::DM_Particle_SI dm_SI(10.0 * GeV);
dm_SI.Set_Sigma_Proton(1.0e-40 * cm * cm);
dm_SI.Print_Summary();

obscura::DM_Particle_SD dm_SD(10.0 * GeV);
dm_SD.Set_Sigma_Proton(1.0e-40 * cm * cm);
dm_SD.Print_Summary();

The Print_Summary() function is a member of many of the classes and provides a terminal output that summarizes
the object.

2. For the DM distribution we use the standard halo model with default parameters.

// 2. DM distribution
obscura::Standard_Halo_Model shm;
shm.Print_Summary();

3. As target nuclei, we choose xenon and import the nuclear data.

// 3. Direct detection targets
obscura::Nucleus xenon = obscura::Get_Nucleus("Xe");
xenon.Print_Summary();

4. With these three objects, we can compute the differential nuclear recoil spectrum for a given recoil energy 𝐸𝑅.

double E_R = 1.0 * keV;
double dRdER_SI = obscura::dRdER_Nucleus(E_R, dm_SI, shm, xenon);
double dRdER_SD = obscura::dRdER_Nucleus(E_R, dm_SD, shm, xenon);

5. The results are given in natural units in powers of GeV. To convert it to another unit, we can use the unit func-
tionality of the libphysica library.

21

obscura, Release v1.0.0

std::cout << "SI-interactions: \tdR/dER (1 keV) = " << In_Units(dRdER_SI, 1.0 / kg /␣
→˓year / keV) << " events / kg / year / keV" << std::endl;
std::cout << "SD-interactions: \tdR/dER (1 keV) = " << In_Units(dRdER_SD, 1.0 / kg /␣
→˓year / keV) << " events / kg / year / keV" << std::endl;

#include <iostream>

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Halo_Models.hpp"
#include "obscura/DM_Particle_Standard.hpp"
#include "obscura/Direct_Detection_Nucleus.hpp"
#include "obscura/Target_Nucleus.hpp"

using namespace libphysica::natural_units;

int main()
{

// 1. DM particle (SI and Sd)
obscura::DM_Particle_SI dm_SI(10.0 * GeV);
dm_SI.Set_Sigma_Proton(1.0e-40 * cm * cm);
dm_SI.Print_Summary();

obscura::DM_Particle_SD dm_SD(10.0 * GeV);
dm_SD.Set_Sigma_Proton(1.0e-40 * cm * cm);
dm_SD.Print_Summary();

// 2. DM distribution
obscura::Standard_Halo_Model shm;
shm.Print_Summary();

// 3. Direct detection targets
obscura::Nucleus xenon = obscura::Get_Nucleus("Xe");
xenon.Print_Summary();

// 4. Evalute the nuclear recoil spectrum
double E_R = 1.0 * keV;
double dRdER_SI = obscura::dRdER_Nucleus(E_R, dm_SI, shm, xenon);
double dRdER_SD = obscura::dRdER_Nucleus(E_R, dm_SD, shm, xenon);

std::cout << "SI-interactions: \tdR/dER (1 keV) = " << In_Units(dRdER_SI, 1.0 / kg /
→˓ year / keV) << " events / kg / year / keV" << std::endl;

std::cout << "SD-interactions: \tdR/dER (1 keV) = " << In_Units(dRdER_SD, 1.0 / kg /
→˓ year / keV) << " events / kg / year / keV" << std::endl;

return 0;
}

--
DM particle summary:

Mass: 10 GeV
(continues on next page)

22 Chapter 7. 7. Examples: Putting it all together

obscura, Release v1.0.0

(continued from previous page)

Spin: 0.5
Low mass: []

Interaction: Spin-Independent (SI)

Coupling ratio fixed: [x]
Isospin conservation: [x]
Coupling ratio: fn/fp = 1

Sigma_P[cm^2]: 1e-40
Sigma_N[cm^2]: 1e-40
Sigma_E[cm^2]: 1e-40

Interaction type: Contact
--

--
DM particle summary:

Mass: 10 GeV
Spin: 0.5
Low mass: []

Interaction: Spin-Dependent (SD)

Coupling ratio fixed: [x]
Isospin conservation: [x]
Coupling ratio: fn/fp = 1

Sigma_P[cm^2]: 1e-40
Sigma_N[cm^2]: 1e-40
Sigma_E[cm^2]: 1e-40

--

Dark matter distribution - Summary
Standard halo model (SHM)

Local DM density[GeV/cm^3]: 0.4
Speed domain [km/sec]: [0,777]
Average DM velocity [km/sec]: (-11.1 , -232 , -7.3)
Average DM speed [km/sec]: 330

Speed dispersion v_0[km/sec]: 220
Gal. escape velocity [km/sec]: 544
Observer's velocity [km/sec]: (11.1 , 232 , 7.3)
Observer's speed [km/sec]: 233

Xe
Isotope Z A Abund.[%] Spin <sp> <sn>
--
Xe-124 54 124 0.095 0 0 0
Xe-126 54 126 0.089 0 0 0

(continues on next page)

7.1. Computing the recoil spectrum of SI & SD nuclear interactions 23

obscura, Release v1.0.0

(continued from previous page)

Xe-128 54 128 1.91 0 0 0
Xe-129 54 129 26.4 0.5 0.01 0.329
Xe-130 54 130 4.07 0 0 0
Xe-131 54 131 21.2 1.5 -0.009 -0.272
Xe-132 54 132 26.9 0 0 0
Xe-134 54 134 10.4 0 0 0
Xe-136 54 136 8.86 0 0 0
Total: 131 99.999

SI-interactions: dR/dER (1 keV) = 13621.8 events / kg / year / keV
SD-interactions: dR/dER (1 keV) = 0.132525 events / kg / year / keV

7.2 Exclusion limits for a sub-GeV DM particle via electron recoil ex-
periments

As a second example for an application of obscura, we will compute the 95% confidence level exclusion limit on the
DM-electron cross section for a sub-GeV DM particle.

We assume a DM mass of 100 MeV, and two different direct detection experiments.

1. An argon based experiment with an exposure of 100 kg years and an observational threshold of at least 4 ionized
electrons.

2. A semiconductor experiment with Si crystal targets, an exposure of 10 gram years, and an observational threshold
of minimum 2 electron-hole pairs.

Let us set up the different objects to obtain the limits.

1. First we define the DM particle object with 100 MeV mass.

// 1. DM particle
obscura::DM_Particle_SI dm(100.0 * MeV);
dm.Print_Summary();

2. For the DM distribution we again use the standard halo model with default parameters.

// 2. DM distribution
obscura::Standard_Halo_Model shm;
shm.Print_Summary();

3. For the first experiment, we create an instance of the DM_Detector_Ionization_ER class and specify the
desired detector properties of the toy experiment.

// 3. Argon target experiment
obscura::DM_Detector_Ionization_ER argon_experiment("Argon toy experiment", 100.0 * kg *␣
→˓year, "Ar");
argon_experiment.Use_Electron_Threshold(4);
argon_experiment.Print_Summary();

4. The same for the semiconductor experiment:

24 Chapter 7. 7. Examples: Putting it all together

obscura, Release v1.0.0

// 4. Si target experiment
obscura::DM_Detector_Crystal silicon_experiment("Silicon toy experiment", 10.0 * gram *␣
→˓year, "Si");
silicon_experiment.Use_Q_Threshold(2);
silicon_experiment.Print_Summary();

4. With these three objects, we can compute the limit on the DM-electron cross section.

// 5. Compute the 95% CL exclusion limits for m = 100.0 MeV
double limit_Ar = argon_experiment.Upper_Limit(dm, shm, 0.95);
double limit_Si = silicon_experiment.Upper_Limit(dm, shm, 0.95);

5. As in the previous example, the results are given in natural units in powers of GeV. We convert it to cm2, and
print the result on the terminal.

std::cout << "Argon experiment: \tsigma_e < " << In_Units(limit_Ar, cm * cm) << " cm^2␣
→˓(95%CL)" << std::endl;
std::cout << "Silicon experiment: \tsigma_e < " << In_Units(limit_Si, cm * cm) << " cm^2␣
→˓(95%CL)" << std::endl;

#include <iostream>

#include "libphysica/Natural_Units.hpp"

#include "obscura/DM_Halo_Models.hpp"
#include "obscura/DM_Particle_Standard.hpp"
#include "obscura/Direct_Detection_Crystal.hpp"
#include "obscura/Direct_Detection_ER.hpp"
#include "obscura/Target_Atom.hpp"
#include "obscura/Target_Crystal.hpp"

using namespace libphysica::natural_units;

int main()
{

// 1. DM particle
obscura::DM_Particle_SI dm(100.0 * MeV);
dm.Print_Summary();

// 2. DM distribution
obscura::Standard_Halo_Model shm;
shm.Print_Summary();

// 3. Argon target experiment
obscura::DM_Detector_Ionization_ER argon_experiment("Argon toy experiment", 100.0 *␣

→˓kg * year, "Ar");
argon_experiment.Use_Electron_Threshold(4);
argon_experiment.Print_Summary();

// 4. Si target experiment
obscura::DM_Detector_Crystal silicon_experiment("Silicon toy experiment", 10.0 *␣

→˓gram * year, "Si");
(continues on next page)

7.2. Exclusion limits for a sub-GeV DM particle via electron recoil experiments 25

obscura, Release v1.0.0

(continued from previous page)

silicon_experiment.Use_Q_Threshold(2);
silicon_experiment.Print_Summary();

// 5. Compute the 95% CL exclusion limits for m = 100.0 MeV
double limit_Ar = argon_experiment.Upper_Limit(dm, shm, 0.95);
double limit_Si = silicon_experiment.Upper_Limit(dm, shm, 0.95);

std::cout << "Argon experiment: \tsigma_e < " << In_Units(limit_Ar, cm * cm) << "␣
→˓cm^2 (95%CL)" << std::endl;

std::cout << "Silicon experiment: \tsigma_e < " << In_Units(limit_Si, cm * cm) << "␣
→˓cm^2 (95%CL)" << std::endl;

return 0;
}

--
DM particle summary:

Mass: 100 MeV
Spin: 0.5
Low mass: []

Interaction: Spin-Independent (SI)

Coupling ratio fixed: [x]
Isospin conservation: [x]
Coupling ratio: fn/fp = 1

Sigma_P[cm^2]: 1e-40
Sigma_N[cm^2]: 1e-40
Sigma_E[cm^2]: 1e-40

Interaction type: Contact
--
Dark matter distribution - Summary

Standard halo model (SHM)

Local DM density[GeV/cm^3]: 0.4
Speed domain [km/sec]: [0,777]
Average DM velocity [km/sec]: (-11.1 , -232 , -7.3)
Average DM speed [km/sec]: 330

Speed dispersion v_0[km/sec]: 220
Gal. escape velocity [km/sec]: 544
Observer's velocity [km/sec]: (11.1 , 232 , 7.3)
Observer's speed [km/sec]: 233

--
Experiment summary: Argon toy experiment

Target particles: Electrons
Exposure [kg year]: 100
Flat efficiency [%]: 100

(continues on next page)

26 Chapter 7. 7. Examples: Putting it all together

obscura, Release v1.0.0

(continued from previous page)

Observed events: 0
Expected background: 0
Statistical analysis: Poisson

Electron recoil experiment (ionization).
Target(s):

Ar (100%)
Electron bins: []
PE (S2) bins: []

Ne threshold: 4
Ne max: 15

--

--
Experiment summary: Silicon toy experiment

Target particles: Electrons
Exposure [kg year]: 0.01
Flat efficiency [%]: 100
Observed events: 0
Expected background: 0
Statistical analysis: Poisson

Electron recoil experiment (semiconductor).
Target: Si semiconductor
eh pair threshold: 2

--

Argon experiment: sigma_e < 1.67038e-41 cm^2 (95%CL)
Silicon experiment: sigma_e < 1.1756e-39 cm^2 (95%CL)

7.2. Exclusion limits for a sub-GeV DM particle via electron recoil experiments 27

obscura, Release v1.0.0

28 Chapter 7. 7. Examples: Putting it all together

CHAPTER

EIGHT

8. INCLUDED EXPERIMENTAL ANALYSES

The module Experiments.hpp contains a series of functions that build a number of experimental analysis as instances
of the DM_Detector class and its derivatives.

For example, for an analysis based on the CRESST-II experiment, we can construct the class instance via

29

https://github.com/temken/obscura/blob/main/include/obscura/Experiments.hpp

obscura, Release v1.0.0

#include "obscura/Experiments.hpp"

// ...

DM_Detector_Nucleus detector = CRESST_II();

// ...

The following nuclear and electron recoil direct detection experiments are implemented in obscura.

8.1 Nuclear recoil experiments

8.1.1 CRESST-II

• Results on light dark matter particles with a low-threshold CRESST-II detector

CRESST Collaboration (G. Angloher et al.)

• Description of CRESST-II data

CRESST Collaboration (G. Angloher et al.)

8.1.2 CRESST-III

• First results on low-mass dark matter from the CRESST-III experiment

CRESST Collaboration (F. Petricca et al.)

• Description of CRESST-III data

CRESST Collaboration (A.H. Abdelhameed et al.)

8.1.3 CRESST-surface

• Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

CRESST Collaboration (G. Angloher et al.)

30 Chapter 8. 8. Included experimental analyses

https://link.springer.com/article/10.1140/epjc/s10052-016-3877-3
https://arxiv.org/abs/1509.01515
https://arxiv.org/abs/1701.08157
https://iopscience.iop.org/article/10.1088/1742-6596/1342/1/012076
https://arxiv.org/abs/1711.07692
https://arxiv.org/abs/1905.07335
https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-5223-9
https://arxiv.org/abs/1707.06749

obscura, Release v1.0.0

8.1.4 DAMIC_N_2012

• Direct Search for Low Mass Dark Matter Particles with CCDs

DAMIC Collaboration (J. Barreto et al.)

8.1.5 XENON1T_N_2017

• First Dark Matter Search Results from the XENON1T Experiment

XENON Collaboration (E. Aprile et al.)

8.2 Electron recoil experiments

8.2.1 CDMS-HVeV_2018

• First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector

SuperCDMS Collaboration (R. Agnese et al.)

8.2.2 CDMS-HVeV_2010

• Constraints on low-mass, relic dark matter candidates from a surface-operated SuperCDMS single-charge
sensitive detector

SuperCDMS Collaboration (D.W. Amaral et al.)

8.2.3 DarkSide-50_S2

• Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment

DarkSide Collaboration (P. Agnes et al.)

8.2. Electron recoil experiments 31

https://www.sciencedirect.com/science/article/pii/S0370269312003887?via%3Dihub
https://arxiv.org/abs/1105.5191
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.181301
https://arxiv.org/abs/1705.06655
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.051301
https://arxiv.org/abs/1804.10697
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.051301
https://arxiv.org/abs/2005.14067
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.111303
https://arxiv.org/abs/1802.06998

obscura, Release v1.0.0

8.2.4 protoSENSEI@surface

• SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run

SENSEI Collaboration (Michael Crisler et al.)

8.2.5 protoSENSEI@MINOS

• SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using
a Prototype Skipper-CCD

SENSEI Collaboration (Orr Abramoff et al.)

8.2.6 SENSEI@MINOS

• SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD

SENSEI Collaboration (Liron Barak et al.)

8.2.7 XENON10_S2

• A search for light dark matter in XENON10 data

XENON10 Collaboration (J. Angle et al.)

• First Direct Detection Limits on sub-GeV Dark Matter from XENON10

Rouven Essig, Aaron Manalaysay, Jeremy Mardon, Peter Sorensen, Tomer Volansky

• New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon

Rouven Essig, Tomer Volansky, Tien-Tien Yu

32 Chapter 8. 8. Included experimental analyses

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.061803
https://arxiv.org/abs/1804.00088
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.161801
https://arxiv.org/abs/1901.10478
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.171802
https://arxiv.org/abs/2004.11378
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.051301
https://arxiv.org/abs/1104.3088
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.021301
https://arxiv.org/abs/1206.2644
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043017
https://arxiv.org/abs/1703.00910

obscura, Release v1.0.0

8.2.8 XENON100_S2

• Low-mass dark matter search using ionization signals in XENON100

XENON Collaboration (E. Aprile et al.)

• New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon

Rouven Essig, Tomer Volansky, Tien-Tien Yu

8.2.9 XENON1T_S2

• Light Dark Matter Search with Ionization Signals in XENON1T

XENON Collaboration (E. Aprile et al.)

8.2. Electron recoil experiments 33

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.092001
https://arxiv.org/abs/1605.06262
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.043017
https://arxiv.org/abs/1703.00910
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.251801
https://arxiv.org/abs/1907.11485

obscura, Release v1.0.0

34 Chapter 8. 8. Included experimental analyses

CHAPTER

NINE

CITING OBSCURA

9.1 How to cite

If you decide to use this code, or if you want to add a reference to it, please cite both the paper and the code.

Emken, T., obscura: A modular C++ tool and library for the direct detection of (sub-GeV) dark matter via
nuclear and electron recoils, Journal of Open Source Software, 6(68), 3725, 2021

Emken, T., 2021, obscura - A C++ library for dark matter detection computations [Code]
[DOI:10.5281/zenodo.4557187]

@article{Emken:2021uzb,
author = "Emken, Timon",
title = "{obscura: A modular C++ tool and library for the direct detection of (sub-GeV)␣
→˓dark matter via nuclear and electron recoils}",
eprint = "2112.01489",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
doi = "10.21105/joss.03725",
journal = "J. Open Source Softw.",
volume = "6",
pages = "3725",
year = "2021"
}

@software{obscura,
author = {Emken, Timon},
title = {{obscura - A C++ library for dark matter detection computations [Code]}},
year = {2021},
publisher = {Zenodo},
doi = {DOI:10.5281/zenodo.4557187},
url = {https://doi.org/10.5281/zenodo.4557187},
howpublished={The code can be found under \url{https://github.com/temken/obscura}.}
}

35

https://joss.theoj.org/papers/10.21105/joss.03725

obscura, Release v1.0.0

9.1.1 Cite a specific version

If you want to cite a specific version, please cite the respective DOI that can be found here. For example, for v1.0.1:

Emken, T., 2021, obscura - A C++ library for dark matter detection computations [Code, v1.0.1]
[DOI:10.5281/zenodo.5956877]

@software{obscura_1_0_1,
author = {Emken, Timon},
title = {{obscura - A C++ library for dark matter detection computations [Code, v1.0.1]}}
→˓,
year = {2021},
publisher = {Zenodo},
version = {v1.0.1},
doi = {DOI:10.5281/zenodo.5956877},
url = {https://doi.org/10.5281/zenodo.5956877},
howpublished={The code can be found under \url{https://github.com/temken/obscura}.}
}

9.2 Research and research software using obscura

The library obscura has been applied to obtain the scientific results of the following papers

2. Solar constraints on captured electrophilic dark matter, by D. Bose et al.

1. Solar reflection of light dark matter with heavy mediators, by Timon Emken

Here is a list of research software using obscura:

1. Emken, T., 2021, Dark Matter Simulation Code for Underground Scatterings - Sun Edition (DaMaSCUS-SUN)
Astrophysics Source Code Library, record [ascl:2102.018], [DOI:10.5281/zenodo.4559874]

36 Chapter 9. Citing obscura

https://zenodo.org/record/4557187
https://arxiv.org/abs/2112.08286
https://arxiv.org/abs/2102.12483
https://github.com/temken/DaMaSCUS-SUN
https://ascl.net/2102.018
https://zenodo.org/record/4559874

CHAPTER

TEN

RELEASE HISTORY

• 10.11.2021: Release of version 1.0.0

• 23.02.2021: Release of version 0.1.0

37

https://github.com/temken/obscura/releases/tag/v1.0.0
https://github.com/temken/obscura/releases/tag/v0.1.0

obscura, Release v1.0.0

38 Chapter 10. Release history

CHAPTER

ELEVEN

LICENSE

MIT License

Copyright (c) 2020 Timon Emken

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

39

https://opensource.org/licenses/MIT

obscura, Release v1.0.0

40 Chapter 11. License

CHAPTER

TWELVE

CONTACT & SUPPORT

The author of obscura is Timon Emken.

For questions, support, bug reports, or other suggestions, please contact timon.emken@fysik.su.se or open an issue on
github.

41

https://timonemken.com/
mailto:timon.emken@fysik.su.se
https://github.com/temken/obscura/issues

obscura, Release v1.0.0

42 Chapter 12. Contact & Support

CHAPTER

THIRTEEN

REFERENCES

For the interpretation of past and future direct searches for DM particles, it is important to be able to provide accurate
predictions for event rates and spectra under a variety of possible and viable assumptions in a computationally efficient
way. While there exists a few tools to compute DM induced nuclear recoil spectra, such as DDCalc or WimPyDD,
obscura is not limited to nuclear targets. Instead its main focus lies on sub-GeV DM searches probing electron recoils
which typically requires methods from atomic and condensed matter physics, see e.g. [Essig2012] or [Catena2019].
In the context of sub-GeV DM searches, new ideas such as target materials or detection techniques are being proposed
regularly, and the theoretical modelling of these are getting improved continuosly. At the same time, currently running
experiments continue to publish their results and analyses, setting increasingly strict bounds on the DM parameter
space. In such a dynamic field, obscura can be an invaluable tool due to its high level of adaptability and facilitate and
accelerate the development of new, reliable research software for the preparation of a DM discovery in the hopefully
near future.

43

https://ddcalc.hepforge.org/
https://wimpydd.hepforge.org/

obscura, Release v1.0.0

44 Chapter 13. References

BIBLIOGRAPHY

[Catena2019] R. Catena et al., Atomic responses to general dark matter-electron interactions, Phys.Rev.Res. 2
(2020) 3, 033195, [arXiv:1912.08204].

[Bednyakov2005] V.A. Bednyakov, Nuclear spin structure in dark matter search: The Zero momentum transfer limit,
Phys.Part.Nucl. 36 (2005) 131-152, [arXiv:0406218].

[Emken2019] T. Emken, Dark Matter in the Earth and the Sun - Simulating Underground Scatterings for the Direct
Detection of Low-Mass Dark Matter, PhD thesis 2019, [arXiv:1906.07541].

[Essig2012] R. Essig et al. , Direct Detection of Sub-GeV Dark Matter, Phys.Rev.D 85 (2012) 076007 ,
[arXiv:1108.5383].

[Essig2016] R. Essig et al. , Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016)
046 , [arXiv:1509.01598].

[Essig2020] R. Essig et al. , Relation between the Migdal Effect and Dark Matter-Electron Scattering in Isolated
Atoms and Semiconductors, Phys.Rev.Lett. 124 (2020) 2, 021801 , [arXiv:1908.10881].

[Evans2019] N.W. Evans et al., Refinement of the standard halo model for dark matter searches in light of the Gaia
Sausage, Phys.Rev.D 99 (2019) 2, 023012, [arXiv:1810.11468].

[Klos2013] P. Klos et al., Large-scale nuclear structure calculations for spin-dependent WIMP scattering with
chiral effective field theory currents, Phys.Rev.D 88 (2013) 8, 083516, [arXiv:1304.7684].

[Nobile2021] E. Del Nobile, Appendiciario – A hands-on manual on the theory of direct Dark Matter detection,
[arXiv:2104.12785].

[Yellin2002] S. Yellin, Finding an upper limit in the presence of unknown background, Phys.Rev.D 66 (2002)
032005, [arXiv:0203002].

45

https://doi.org/10.1103/PhysRevResearch.2.033195
https://doi.org/10.1103/PhysRevResearch.2.033195
https://arxiv.org/abs/1912.08204
https://arxiv.org/abs/0406218
https://arxiv.org/abs/1906.07541
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.85.076007
https://arxiv.org/abs/1108.5383
https://doi.org/10.1007/JHEP05(2016)046
https://doi.org/10.1007/JHEP05(2016)046
https://arxiv.org/abs/1509.01598
https://doi.org/10.1103/PhysRevLett.124.021801
https://arxiv.org/abs/1908.10881
https://doi.org/10.1103/PhysRevD.99.023012
https://arxiv.org/abs/1810.11468
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.083516
https://arxiv.org/abs/1304.7684
https://arxiv.org/abs/2104.12785
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.032005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.66.032005
https://arxiv.org/abs/0203002

	1. Getting started
	Installation
	Dependencies
	1. boost
	2. libconfig
	3. libphysica

	Download & Build

	Using obscura as a tool
	The configuration file

	Using obscura as a library

	2. The modular structure of obscura
	3. The target classes
	Nuclear targets
	The Isotope class
	The Nucleus class
	Construction of nuclear targets

	Electron targets in atoms
	The Atomic_Electron class
	The Atom class
	Included ionization form factors

	Electron targets in crystals

	4. The DM_Particle classes
	The interface / base class
	Spin-Independent (SI) interactions
	Spin-Dependent (SD) interactions

	5. The DM_Distribution classes
	The interface / base class
	The standard halo model (SHM)
	The SHM++
	Imported DM distributions

	6. The DM_Detector classes
	Nuclear recoil experiments
	Electron recoil experiments

	7. Examples: Putting it all together
	Computing the recoil spectrum of SI & SD nuclear interactions
	Exclusion limits for a sub-GeV DM particle via electron recoil experiments

	8. Included experimental analyses
	Nuclear recoil experiments
	CRESST-II
	CRESST-III
	CRESST-surface
	DAMIC_N_2012
	XENON1T_N_2017

	Electron recoil experiments
	CDMS-HVeV_2018
	CDMS-HVeV_2010
	DarkSide-50_S2
	protoSENSEI@surface
	protoSENSEI@MINOS
	SENSEI@MINOS
	XENON10_S2
	XENON100_S2
	XENON1T_S2

	Citing obscura
	How to cite
	Cite a specific version

	Research and research software using obscura

	Release history
	License
	Contact & Support
	References
	Bibliography

